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Abstract. Dynamical linked cluster expansions are linked cluster expansions with hopping parameter terms
endowed with their own dynamics. We discuss physical applications to systems with annealed and quenched
disorder. Examples are the bond-diluted Ising model and the Sherrington-Kirkpatrick spin glass. We derive
the rules and identify the full set of graphs that contribute to the series in the quenched case. This way
it becomes possible to avoid the vague extrapolation from positive integer n to n = 0, that usually goes
along with an application of the replica trick.

PACS. 75.10.Nr Spin-glass and other random models – 05.50.+q Lattice theory and statistics (Ising,
Potts, etc.) – 02.10.-v Logic, set theory, and algebra

1 Introduction

Linked cluster expansions (LCEs) have a long tradition
in statistical physics. Originally applied to classical fluids,
later to magnetic systems ([1–3] and references therein),
they were generalized to applications in particle physics
in the eighties [4]. There they have been used to study
the continuum limit of a lattice Φ4 field theory in four di-
mensions at zero temperature. In [5,6] they were further
generalized to field theories at finite temperature, simul-
taneously the highest order in the expansion parameter
was increased to eighteen. Usually the analytic expan-
sions are obtained as graphical expansions. Because of the
progress in computer facilities and the development of effi-
cient algorithms for generating the graphs, it is nowadays
possible to handle of the order of billions of graphs. The
whole range from high temperatures down to the critical
region becomes available, and thermodynamic quantities
like critical indices and critical temperatures are deter-
mined with high precision (the precision is comparable
or even better than in corresponding high quality Monte
Carlo results) [6–9]. An extension of LCEs to a finite vol-
ume in combination with a high order in the expansion
parameter turned out to be a particularly powerful tool
for investigating the phase structure of systems with first
and second order transitions by means of a finite size scal-
ing analysis [10].

Linked cluster expansions are series expansions of the
free energy and connected correlation functions about an
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ultralocal, decoupled theory in terms of a hopping pa-
rameter K. The corresponding graphical representation
is a sum in terms of connected graphs. The value of K
parametrizes the strength of interactions between fields at
different lattice sites. Usually they are chosen as nearest
neighbours. In contrast to the ultralocal terms of a generic
interaction we will sometimes refer to hopping terms as
non-ultralocal.

In [14] we have generalized these linked cluster ex-
pansions to dynamical linked cluster expansions (DLCEs).
These are linked cluster expansions with hopping param-
eter terms that are endowed with their own dynamics.
Such systems are realized in spin glasses with (fast) spins
and (slow) interactions [11–13]. They also occur in varia-
tional estimates for SU(N)-gauge-Higgs systems, cf. [14].
Like LCEs they are expected to converge for a large class
of interactions.

Formally DLCEs amount to a generalization of
an expansion scheme from 2-point to point-link-point-
interactions. These are interactions between fields asso-
ciated with two points and with one pair of points called
link. The points and links are not necessarily embedded on
a lattice, and the links need not be restricted to nearest
neighbours. In [14] we have developed a new multiple-
line graph theory in which a generalized notion of con-
nectivity plays a central role. Standard notions of equiva-
lence classes of graphs like 1-line irreducible and 1-vertex
irreducible graphs have been generalized, and new notions
like 1-multiple-line irreducible graphs were defined in or-
der to give a systematic classification.
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In this paper we discuss applications to disordered
systems, in particular we show explicitly how to avoid
the replica trick in quenched disordered systems. The pa-
per is organized as follows. In Section 2 we specify the
models that admit a DLCE. We introduce multiple-line
graphs and explain the idea behind the abstract notions
of multiple-line graph theory. Applications to disordered
systems are presented in Section 3. There it is of par-
ticular interest that DLCEs allow for the possibility of
avoiding the replica trick. In the quenched limit we derive
that DLCEs must be restricted to a subclass of the corre-
sponding graphical expansion, so-called quenched DLCEs
(QDLCEs). We also list some examples for models whose
phase structure is accessible to QDLCEs. In particular the
bond diluted Ising model belongs to these examples.

2 A primer to DLCEs

To make the paper self-contained we first specify the class
of models for which we have developed dynamical linked
cluster expansions in [14]. Next we illustrate some basic
notions of multiple-line graph theory, in particular the
need for a new notion of connectivity.

By Λ0 we denote a finite or infinite set of points. One
of its realizations is a hypercubic lattice in D dimensions,
infinite or finite in some directions with the topology of
a torus. Λ1 denotes the set of unordered pairs (x, y) of
sites x, y ∈ Λ0, x 6= y, also called unoriented links, and Λ1

a subset of Λ1.
We consider physical systems with a partition function

of the generic form

Z(H, I, v) ≡ expW (H, I, v)

= N
∫
DφDU exp (−S(φ,U, v))

× exp

∑
x∈Λ0

H(x)φ(x) +
∑
l∈Λ1

I(l)U(l)

,
(1)

with measures

Dφ =
∏
x∈Λ0

dφ(x) , DU =
∏
l∈Λ1

dU(l) (2)

and action

S(φ,U, v) =
∑
x∈Λ0

S0(φ(x)) +
∑
l∈Λ1

S1(U(l))

− 1
2

∑
x,y∈Λ0

v(x, y)φ(x)U(x, y)φ(y), (3)

with non-ultralocal couplings

v(x, y) = v(y, x) 6= 0 only for (x, y) ∈ Λ1,

in particular v(x, x) = 0. (4)

For later convenience the normalization via N is chosen
such that W [0, 0, 0] = 0.

The field φ(x) is associated with the sites x ∈ Λ0

and the field U(l) lives on the links l ∈ Λ1, and we
write U(x, y) = U(l) for l = (x, y). For definiteness and
for simplicity of the notation here we assume φ(x) ∈ R
and U(l) ∈ R. In our actual applications to spin glasses
the φs are the (fast) Ising spins and the Us ∈ R are the
(slow) interactions. The action is split into two ultralocal
parts, S0 depending on fields on single sites, and S1 de-
pending on fields on single links l ∈ Λ1. For simplicity we
choose S1 as the same function for all links l ∈ Λ1. We
may identify Λ1 with the support of v,

Λ1 = {l = (x, y)|v(x, y) 6= 0} · (5)

The support of v(x, y) need not be restricted to nearest
neighbours, also the precise form of S0 and S1 does not
matter for the generic description of DLCEs, S0 and S1

can be any polynomials in φ and U , respectively. The only
restriction is the existence of the partition function.

Note that the interaction term v(x, y) φ(x) U(x, y)
φ(y) contains a point-link-point-interaction and general-
izes the 2-point-interactions v(x, y) φ(x) φ(y) of usual hop-
ping parameter expansions. The effective coupling of the
φ fields has its own dynamics governed by S1(U), the rea-
son why we have called the new expansion scheme dynam-
ical LCE.

Dynamical linked cluster expansions are induced by a
Taylor expansion of W (H, I, v) = lnZ(H, I, v) about v =
0, the limit of a completely decoupled system. We want
to express the series for W in terms of connected graphs.
Let us consider the generating equation

∂W/∂v(xy) = 1/2〈φ(x)U(x, y)φ(y)〉

= 1/2
(
WH(x)I(x,y)H(y) +WH(x)H(y)WI(x,y)

+WH(x)I(x,y)WH(y) +WI(x,y)H(y)WH(x)

+WH(x)WH(y)WI(x,y)

)
. (6)

Here 〈·〉 denotes the normalized expectation value
w.r.t. the partition function of equation (1). Sub-
scripts H(x) and I(x, y) = I(y, x) = I(l) denote the
derivatives of W w.r.t. H(x) and I(x, y), respectively.

Next we would like to represent the right hand side of
equation (6) in terms of connected graphs. Once we have
such a representation for the first derivative of W w.r.t.
v, graphical expansions for the higher derivatives can be
traced back to the first one.

For each W in equation (6) we draw a shaded bubble,
for each derivative w.r.t. H a solid line, called a φ-line,
with endpoint vertex x, and for each derivative w.r.t. I
a dashed line, called a U -line, with link label l = (x, y).
The main graphical constituents are shown in Figure 1.
Two φ-lines with endpoints x and y are then joined by
means of a dashed U -line with label l, if the link l has x
and y as its endpoints, i.e. l = (x, y). According to these
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Fig. 1. Graphical representation of the derivatives of W (H, I, v). (a) n-point function ∂nW/∂H(x1) · · · ∂H(xn), (b) n-link
function ∂nW/∂I(l1) · · · ∂I(ln).

Fig. 2. Generating equation of the graphical expansion of DLCEs. The solid line in each graph carries a propagator v(x, y).
A dashed U-line with label l intersects a solid line with endpoints x and y if l = (x, y).

Fig. 3. Representation of WH(x)WH(y)WH(r)WH(s)WI(x,y)I(r,s). (a) according to the rules of Figures 1 and 2, (b) same as (a),
but at v = 0 and simplified for a formal definition of multiple-line connectivity, cf. [14], (c) same as (b), but for use in the actual
graphical representations.

rules equation (6), multiplied by v(x, y) and summed over
x and y, is represented by Figure 2. Note that, because of
the Taylor operation, each solid line from x to y carries a
factor v(x, y).

Since the actual need for a new type of connectivity is
not quite obvious from Figure 2, because equation (6) does
not contain higher than first order derivatives w.r.t. I, let
us consider a term

WH(x)WH(y)WH(r)WH(s)WI(x,y)I(r,s) (7)

occurring in the second derivative of W w.r.t. v(x, y),
v(r, s). According to the above rules this term would be
represented as shown in Figure 3a. While the 2 vertices
in the last term of Figure 2 are connected in the usual

sense via a common (solid) line (the dashed line with an
attached bubble could be omitted in this case), the graph
in Figure 3a would be disconnected in the old sense, since
neither x nor y are line-connected with r and s, but – as
a new feature of DLCE graphs – the lines from x to y and
from r to s are connected via the dashed lines emerging
from a common bubble shown in the middle of the graph.
As we see from Figure 3a, we need an additional notion
of connectivity referring to the possibility of multiple-line
connectivity. While the analytic expression is fixed, it is a
matter of convenience to further simplify the graphical no-
tation of Figure 3a at v = 0. Two possibilities are shown
in Figures 3b and c. To Figure 3b we later refer in the
formal definition of the new type of multiple-line connec-
tivity. In the familiar standard notion of connectivity two
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vertices of a graph are connected via lines. The vertices
are line-connected. Already there, in a dual language, one
could call two lines connected via vertices. The second for-
mulation is just appropriate for our need to define when
two lines are connected. The corresponding vertices medi-
ating the connectivity of lines are visualized by tubes, in
Figure 3b we have just one of them. The tubes should be
distinguished from the former type of vertices represented
as full dots which are connected via bare φ-lines. In Fig-
ure 3c we show a simplified representation of Figure 3b
that we actually use in graphical expansions.

The derivative terms have to be evaluated at v = 0.
For v = 0 we have a decomposition of W according to

W (H, I, v = 0) =
∑
x∈Λ0

W 0(H(x)) +
∑
l∈Λ1

W 1(I(l)) (8)

with

expW 0(H) ≡ Z0(H) =

∫∞
−∞ dφ exp (−S0(φ) +Hφ)∫∞
−∞ dφ exp (−S0(φ))

(9)

and

expW 1(l) ≡ Z1(I) =

∫∞
−∞ dU exp (−S1(U) + IU)∫∞
−∞ dU exp (−S1(U))

·

(10)

In equations (9, 10) we have omitted any single site or
single link dependence, because we assume that S0 and S1

are the same for all x ∈ Λ0 and l ∈ Λ1, respectively.
Therefore, at v = 0, the only non-vanishing derivatives of
W are

WH(x1)H(x2)...H(xn)

∣∣
v=0

=
∂nW 0(H(x1))
∂H(x1)n

δx1,x2,...xn

(11)

and

WI(l1)I(l2)...I(lm)

∣∣
v=0

=
∂mW 1(I(l1))
∂I(l1)m

δl1,l2,...lm , (12)

but mixed derivatives w.r.t. H and I vanish. As antici-
pated in Figures 3b and c, for v = 0 we replace the
dashed bubbles and graphically distinguish between bub-
bles with φ-lines and bubbles with U -lines. We define

s ···

 n = v◦cn =
(
∂nW 0(H)
∂Hn

)
H=0

(13)

for a connected n-point vertex with n ≥ 1 bare φ-lines
emerging from it and

···

 ν = m1c
ν =

(
∂νW 1(I)
∂Iν

)
I=0

(14)

for a connected ν-line consisting of ν bare lines. If ν = 1,
we often omit the dashed line. If the bare lines of a ν-line
are internal φ-lines, they get vertices attached to their
endpoints, if they are external U -lines, no vertices will be
attached.

Let V denote the lattice volume in D dimensions. The
Taylor expansion of W about v = 0 to second order in v
then reads

W (H, I, v)=W (H, I, v = 0)

+
∑

x,y∈Λ0

v(x, y)
1
2
WH(x)WH(y)WI(x,y)

+
1
2

∑
x,y,r,s∈Λ0

1
4
v(x, y)v(r, s)

×
(

4WH(y)WH(s)WH(r)H(x)WI(x,y)WI(r,s)

+2WH(x)H(r)WH(y)H(s)WI(x,y)WI(r,s)

+4WH(y)WH(s)WH(r)H(x)WI(x,y)I(r,s)

+2WH(r)H(x)WH(y)H(s)WI(r,y)I(x,s)

+WH(x)WH(y)WH(r)WH(s)WI(x,y)I(r,s)

)
v=0

+O(v3), (15)

where we have used that v(x, x) = 0. For each W in the
products of W s we now insert equations (11, 12).

If we choose v in a standard way as next-neighbour
couplings

v(x, y) = 2K
D−1∑
µ=0

(δx+µ̂,y + δx−µ̂,y) (16)

with µ̂ denoting the unit vector in µ-direction,
equation (15) becomes in a graphical representation
at H = I = 0

W (0, 0, v)
V

= (2K)
1
2

(2D) t t
+(2K)2

{
1
2

(2D)2 t
t t

+
1
4

(2D) t t
+

1
2

(2D)2 t
t t

+
1
4

(2D) t t (17)

+
1
8

2(2D) tt tt }
+O(K3).



H. Meyer-Ortmanns and T. Reisz: Dynamical linked cluster expansions with applications to disordered systems 553

For clarity, here we have written explicitly the topo-
logical symmetry factors and the lattice embedding num-
bers. (Usually graphs represent their full weights including
these factors.) Note that the first two graphs of the second
order contribution also occur in a usual LCE with frozen
U -dynamics, the next two differ by an additional dashed
2-line and the last one becomes even disconnected without
the dashed line.

As usual, graphical expansions for correlation func-
tions, in particular susceptibilities, are generated from
W (H, I, v) by taking derivatives w.r.t. the external fields
H and I. Graphically this amounts to attaching external
φ-lines and U -lines withs

(1 endpoint) attached to vertices, e.g. s s
(no endpoint) attached to ν-lines, e.g. s s

(18)

In passing we remark that the conventional LCE is in-
cluded as a special case of the DLCE, if the U -dynamics
is “frozen” to some value U0 6= 0, so that

W 1(I) = −S1(U0) + IU0,

∂W 1(I)
∂I

= U0,

∂nW 1(I)
∂In

= 0 for all n > 1, (19)

i.e., no n-lines do occur with n > 1. In this case it becomes
redundant to attach dashed lines to bare lines. As men-
tioned above, in an LCE only the first three contributions
would be left in equation (17).

3 Applications to disordered systems

In this section we consider applications of DLCEs to dis-
ordered systems, in particular to spin glasses with “slow”
interactions coupled to “fast” spins. The interactions J are
assumed to be in equilibrium with a thermal heat bath of
inverse temperature β ′, while the spins σ are equilibrated
according to a second inverse temperature β. Both sys-
tems need not be mutually in equilibrium. Let Zβ(J) be
the partition function that describes the equilibrium dis-
tribution of the spins for given Js,

Zβ(J) =
∑

{σi=±1}
exp

β∑
i<j

J(i,j)σiσj

. (20)

The sum runs over pairs (i, j) that need not be restricted
to nearest neighbours only.

We further assume that the dynamics of the time evo-
lution of the slow interactions J is governed by a Langevin
equation

N
d
dt
J(i,j) = − ∂

∂J(i,j)
H(J) +

√
Nηij(t) (21)

with

H(J) = − 1
β

lnZβ(J) +
1
2
µN

N∑
i<j=1

J2
(i,j). (22)

Here Zβ(J) is given by (20),N is the total number of spins,
µ is a positive constant and ηij is a stochastic Gaussian
white noise of zero mean and correlation

〈ηij(t)ηkl(t ′)〉 =
2
β ′
δ(ij),(kl)δ(t− t ′). (23)

Such a Langevin equation for the Js can be derived from
an ansatz which is motivated by neural networks [11–13].
Moreover, since the time evolution of the Js is determined
by a dissipative Langevin equation, the equilibrium distri-
bution of the slow variables is again a Boltzmann distri-
bution, governed now by the second temperature β ′−1,

Z ′β′ = N
∫ ∞
−∞

N∏
i<j=1

dJ(i,j) exp (−β′H(J)), (24)

with N some normalization that will be specified below.
The effective Hamiltonian H of J is given by (22).

It is these equilibrium aspects of coupled systems of
fast spins and slow interactions that we can treat analyt-
ically with DLCEs, as we will show below.

Let us first rewrite Z ′β′ in the form

Z ′xβ =
∫ ∞
−∞

N∏
i<j=1

(√
QN

2π
dJ(i,j)

)

× exp

−1
2
QN

∑
i<j

J2
(i,j)

 Zβ(J)x

≡ [[Zβ(J)x]], (25)

where we have introduced Q = β′µ and real x = β′/β
as the ratio of two temperatures. The normalization has
been chosen such that [[1]] = 1. If we assume that the
time scale of fluctuations of the spins is so short that the
J are only sensitive the averages of the σ, the quantity of
physical interest is not

ln

∫ ∞
−∞

N∏
i<j=1

(√
QN

2π
dJ(i,j)

)

×

∑
{σi}

exp

β N∑
i<j=1

J(i,j)σiσj

x

× exp

−1
2
QN

∑
i<j

J2
(i,j)

 (26)
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where fluctuations of the σs do influence the Js, but

∫ ∞
−∞

N∏
i<j=1

(√
QN

2π
dJ(i,j)

)

× ln

∑
{σi}

exp

β N∑
i<j=1

J(i,j)σiσj


× exp

−1
2
QN

∑
i<j

J2
(i,j)

, (27)

or, in a shorthand notation,∫
DJ lnZβ(J) ≡ [[lnZβ(J)]]. (28)

Usually one rewrites∫
DJ lnZβ(J) =

∫
DJ lim

x→0

Zβ(J)x − 1
x

= lim
x→0

∫
DJ Zβ(J)x − 1

x

= lim
x→0

ln{1 + ([[Zβ(J)x]]− 1)}
x

= lim
x→0

lnZ ′xβ
x
· (29)

For the second equality sign one has assumed that
∫
DJ

commutes with limx→0, while DJ stays finite as β′ → 0.
(Note that DJ stays finite if µ → ∞ such that Q = β′µ
stays finite for β′ → 0.) In the third equality sign it was
assumed that limx→0[[Zβ(J)x]] = 1. Because of the equal-
ity (29) the limit x→ 0 is called the quenched limit. Stated
in more physical terms, the spins look frozen from the
point of view of the J , their dynamics does not influence
the J , but vice versa the J-dynamics does influence the
spins.

So far, x as the ratio of two temperatures is real.
Rewriting the left hand side of (29) according to the right
hand side is called the replica trick [17]. The uncontrolled
approximation that usually enters the replica trick is that
now the right hand side is evaluated for positive integer
x ≡ n and extrapolated to n = 0. Clearly a function that
is known only for positive integer n does not have a unique
extrapolation to n = 0 without further assumptions. Nev-
ertheless, this approximation is made, because it is rather
convenient. For integer n, Zβ(J)n is the partition function
of an n times replicated system of which the logarithm is
taken after the integration over the Js. It is seen as follows.
We rewrite

Zβ(J)n =
∑
{σ(a)
i }

exp

β n∑
a=1

N∑
i<j=1

J(i,j)σ
(a)
i σ

(a)
j

, (30)

with a = 1, . . . , n labelling the replicated spin variables,
so that

Z ′nβ =
∫ ∞
−∞

N∏
i<j=1

dJ(i,j)

∑
{σ(a)
i =±1}

exp
(
−S(J, σ(a))

)
,

S
(
J, σ(a)

)
= −β

n∑
a=1

N∑
i<j=1

J(i,j)σ
(a)
i σ

(a)
j +

1
2
QN

∑
i<j

J2
(i,j) ·

(31)

Linear terms in σ and J may be included according to

Slin = −h
n∑
a=1

N∑
i=1

σ
(a)
i + c

N∑
i<j=1

J(i,j) (32)

with constant external fields h and c.
Obviously, because of integer n, Z ′nβ has the form of

models to which DLCE applies, with a hopping term

Shop
(
J, σ(a)

)
= −β

n∑
a=1

N∑
i<j=1

J(i,j)σ
(a)
i σ

(a)
j , (33)

a single link action

S1(J(i,j)) = cJ(i,j) +
1
2
QN J2

(i,j), (34)

and a single site action

S0
(
σ

(a)
i

)
= −h

n∑
a=1

σ
(a)
i . (35)

Obviously the single link interaction (34) could be re-
placed by any suitably bounded function of the J(ij), in
particular by non-quadratic monomials corresponding to
non-Gaussian distributions, without rendering DLCEs im-
practicable.

Depending on n we distinguish the following cases.

• n = 1. First we note that for n = 1 we can directly
apply DLCE to lnZ ′β ′=β and to derived quantities to
obtain their series expansions in β. But from a phys-
ical point of view, in a disordered system one is not
interested in n = 1, because n = 1 corresponds to the
completely annealed situation, in which the fast spins
and the slow interactions are in mutual equilibrium.
(In contrast, in particle physics one is interested in
the n = 1 case, cf. our applications of DLCEs in the
framework of variational cumulant expansions of the
SU(2) Higgs model [14].)
• n > 1, integer. Again we apply DLCE to lnZ ′β ′=nβ ,

but have to account for the permutation symme-
try between the replicas. Formally, the replica sym-
metry plays a role similar to an internal symmetry,
e.g. an O(N) symmetry in a scalar Higgs model. DL-
CEs with nontrivial internal symmetries have been
discussed in connection with the SU(2) Higgs model
[14]. Thus we can study “unquenched” equilibrium
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aspects of systems with two temperatures and com-
pare the results from DLCEs adapted to “internal”
replica symmetry with Monte Carlo simulations for the
same n [18,19].
• n = 0, the quenched limit. As we will show in the

next section, in order to discuss the x → 0 limit, we
need not refer to n times replicated systems Zβ(J)n
characterized by (33–35), but just to Zβ(J) given
by (33–35) with n = 1. By means of special DLCEs,
so-called quenched DLCEs (QDLCEs), we directly cal-
culate the left hand side of (29). Therefore, setting
n = 1 in (33–35) in QDLCEs does not imply the com-
pletely annealed case, because we first take the loga-
rithm of Zβ(J) and then average over the Js.

3.1 Avoiding the replica trick

In this section we give a detailed proof of the statement
how to avoid the replica trick that has been made in [14].
First we adapt the notation to Section 2 to include more
general cases. Λ0 denotes the support of the spins, that is
the set of lattice sites, with V = |Λ0| denoting their total
number. Λ1 ⊆ Λ1 are the pairs of sites whose spins inter-
act. In accordance with (25), we write for the normalized
link-average of a function f(J)

[[f(J)]] =
∫
DJ f(J) (36)

with

DJ =
∏
l∈Λ1

dµ(J(l)) ,

dµ(J) = N1 dJ exp (−S1(J)) ,
∫ ∞
−∞

dµ(J) = 1. (37)

It is convenient to introduce the single link expectation
values

〈g(J)〉1 ≡
∫

dµ(J) g(J) (38)

and the generating function W 1(I) by

expW 1(I) ≡ 〈exp (IJ)〉1 · (39)

The way in which the replica trick can be avoided is
examplified for the free energy density Wsp/V of the spin
system averaged over the link couplings. The partition
function of the spin system for a given distribution of the
link interactions J(x, y) is given by

expWsp(J) = Nsp
∫
Dσ exp (−Ssp(σ, J)), (40)

where Wsp(0) = 0 and

Ssp(σ, J) = − 1
2

∑
x,y∈Λ0

v(x, y)σ(x)σ(y)J(x, y),

Dσ =
∏
x∈Λ0

dσ(x) exp (−S0(σ(x))). (41)

Without loss of generality we identify the support of the
interaction v(x, y) = v(y, x) with the set Λ1 of lattice sites
where DJ is supported,

Λ1 =
{
l = (x, y) ∈ Λ0 × Λ0 | v(x, y) 6= 0

}
· (42)

For simplicity we assume v(x, y) to be of the form

v(x, y) = 2K
∑

z∈N (x)

δy,z, (43)

so that K is a measure of the strength of the interac-
tions v(x, y).

The free energy density of the spin system allows for a
series expansion in the standard LCE sense, with the link
field J(l) playing the role of a “background field”,

1
V
Wsp(J) =

∑
L≥0

(2K)L
∑

Γ∈Gsp0 (L)

wsp(Γ, J). (44)

Here GspE (L) (with E = 0) denotes the set of equivalence
classes of connected LCE graphs with E external lines
and L internal lines. The spin-weights wsp(Γ, J) are of
the form

wsp(Γ, J) = Rsp(Γ )
′∑

LΓ→Λ1

∏
l∈Λ1

J(l)m(l). (45)

The sum is taken over all non-vanishing lattice embed-
dings of the graph Γ . It runs over all maps of internal
lines of the graph Γ to pairs of lattice sites of Λ1 that are
consistent with the graph topology in the sense discussed
in [14]. For every l ∈ Λ1, m(l) denotes the number of lines
of Γ that are mapped onto the link l by the embedding. All
other factors that contribute to the weight are collected
in the prefactor Rsp(Γ ), including the inverse topological
symmetry number of Γ .

Next we want to express [[Wsp(J)]] as a series in K by
means of DLCE. Toward this end we set f(J) = Wsp(J)
and insert the series (44) with (45) into (36). At this stage
we are not concerned with question of (uniform or domi-
nated) convergence and obtain[[

1
V
Wsp(J)

]]
=
∑
L≥0

(2K)L
∑

Γ∈Gsp0 (L)

∫
DJ wsp(Γ, J)

=
∑
L≥0

(2K)L
∑

Γ∈Gsp0 (L)

Rsp(Γ )

×
′∑

LΓ→Λ1

∏
l∈Λ1

〈
J(l)m(l)

〉
1
· (46)

The next step is to express the full single link expec-
tation values in terms of the connected ones. They are
related by

〈Jm〉1 =
∑

Π∈P(m)

∏
P∈Π

〈
J |P |

〉c
1
, (47)
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where P(m) denotes the set of all partitions of m =
{1, . . . ,m} into non-empty, mutually disjoint subsets ofm.
|P | is the number of elements of the set P . The rela-
tion (47) is equivalent to the partition of all lines of Γ
that are mapped to the same lattice link into multiple
lines, with every multiple line contributing a factor

〈
J |P |

〉c
1

=
∂|P |W 1(I)
∂I |P |

∣∣∣∣
I=0

= m1c
|P |. (48)

Using (47, 48) we rewrite (46) as[[
1
V
Wsp(J)

]]
=
∑
L≥0

(2K)L
∑

Γ∈Gsp0 (L)

Rsp(Γ )

×
∑

Π∈P(LΓ )

(∏
P∈Π

m1c
|P |

) ′∑
Π→Λ1

∏
l∈Λ1

1

.
(49)

The last summation in (49) is over all maps LΓ → Λ1

of the lines of Γ to the lattice links of Λ1 subject to the
constraint that all lines that belong to the same multiple-
line corresponding to some P ∈ Π are mapped onto the
same lattice link.

Finally we rewrite (49) as a sum over multiple-line
graphs. To this end, we first observe that for every
Γ ∈ Gsp0 (L), every partition Π ∈ P(LΓ ) of the lines
of Γ into multiple-lines generates a multiple-line graph
∆ = (Γ,Π) in the obvious way. Let us denote by G0,0(L)
the subset of multiple-line graphs of G0,0(L) that stay con-
nected after decomposition of all multiple lines. (These
are the multiple-line graphs which stay connected in
the usual graph theoretical sense, when the dashed lines
are omitted.) For every ∆ ∈ G0,0(L) there is a unique
Γ (∆) ∈ Gsp0 (L) and at least one Π ∈ P(LΓ (∆)) such that
(Γ (∆),Π) = ∆. Let n∆ be the (uniquely determined)
number of partitions Π ∈ P(LΓ (∆)) with (Γ (∆),Π) = ∆,
and Π(∆) such an arbitrary partition. Equation (49) then
becomes[[

1
V
Wsp(J)

]]
=
∑
L≥0

(2K)L
∑

∆∈G0,0(L)

n∆R
sp(Γ (∆))

×

 ∏
P∈Π(∆)

m1c
|P |

  ′∑
Π(∆)→Λ1

1

 .

(50)

The last bracket of (50) is the lattice embedding factor of
the multiple-line graph ∆. The second bracket from the
right does not depend on the choice of Π(∆) and is the
product of the multiple-line coupling constants as defined
in [14]. Finally, n∆Rsp(Γ (∆)) is precisely the remaining
part of the weight of ∆ that was described in detail in [14],
endowed with the correct inverse topological symmetry
number of the multiple-line graph ∆ (because of the fac-
tor n∆).

In summary, we obtain the series expansion of the link-
averaged free energy density in terms of DLCE graphs,[[

1
V
Wsp(J)

]]
=
∑
L≥0

(2K)L
∑

∆∈G0,0(L)

w(∆). (51)

The weight w(∆) of a multiple-line graph ∆ is defined and
computed according to the rules given in [14].

Equation (51) is the series representation of the
link-averaged free energy density of the spin system,
i.e. the free energy density of the n = 0 replica system,
in terms of DLCE graphs. It looks much like the series
representation of the 1-replica system, which is given by

1
V
W1−repl ≡

1
V

ln [[expWsp(J)]]

=
∑
L≥0

(2K)L
∑

∆∈G0,0(L)

w(∆) (52)

according to the discussion of Section 2. We recall
that G0,0(L) is the set of DLCE vacuum graphs with L
bare lines that are connected in the generalized DLCE
sense. Comparing (51) and (52), the transition from n = 1
to n = 0 replicas is achieved by keeping only the subset
G0,0(L) ⊆ G0,0(L) of multiple-line graphs that are con-
nected in the original (LCE) sense.

We emphasize that the restriction of DLCEs to QDL-
CEs is not an ad hoc (or intuitively motivated) assumption
but a derived consequence of the fact that the logarithm
is taken before the integration

∫
DJ . This procedure ac-

counts for all graphs that contribute to a given order in K.
Thus we do have to truncate the series unless the series
can be completely summed up, as it happens in excep-
tional cases.

Without the need for truncation there is an equality
sign in (51). This should be stressed in contrast to other
graphical expansion schemes that remain to be approxi-
mative even to arbitrarily high orders. This is certainly
an advantage from a systematic point of view. From a
practical point of view a computer implementation of the
algorithmic generation of graphs is necessary, because the
number of contributing graphs increases rather rapidly
with the order of the expansion, as explicit calculations
in the SU(2) Higgs model have shown [14].

We expect that the series (51) are convergent for a
large class of interactions S1(J) and v(x, y) if the cou-
pling constant K is sufficiently small. For special inter-
actions most of the multiple-line graphs yield vanishing
contributions so that we can further restrict the sum to a
subset of G0,0(L). An example is given by the mean field
type of interaction of the Sherrington-Kirkpatrick model,
cf. Section 3.2.

3.2 QDLCEs

In the following we list some examples for systems of which
we can study the phase structure by means of QDLCEs.
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Their actions are special cases of (33–35) with n = 1 (as
explained above, n = 1 does not imply complete annealing
here!) and the following choice of variables.

• Infinite range models. Choose J(i,j) ∈ R as before, σi ∈
±1, i, j ∈ {1, . . . , N},

v(x, y) = K(1− δx,y),
Λ1 ≡ Λ1 is the set of all pairs of sites,

S1(J) = N
1
2
J2. (53)

Now the sum over the sites in (33) runs over arbitrary
pairs (i, j), i < j, and we obtain the infinite range
Sherrington-Kirkpatrick model. For infinite range and
in the thermodynamic limit (N → ∞), the phase
structure can be solved by replica mean field theory,
cf. e.g. [16]. For QDLCEs the infinite range and N →
∞ limits imply that only tree graphs of 2-lines
contribute to the series of the free energy density,
such as

(54)

The reason for that is that each 2-line gets a factor of
1/N from the S1-part of the action, but each vertex
gets a factor (N − 1) from the embedding onto a lat-
tice Λ0. The contribution of every tree graph to the free
energy is proportional to N . If a chain of 2-lines con-
necting the vertices gets closed, forming a loop, there
is one (N − 1) less in the total embedding factor. Thus
the contribution is suppressed by 1/(N − 1) for every
loop and vanishes in the thermodynamic limit. Because
of the simple tree structure there is a chance for sum-
ming up the series. This is currently under investiga-
tion.
• Finite range connectivity. The sum

∑
i<j of the spins

is now restricted to next-neighbours or, more gener-
ally, to a finite number of pairs. Rather than speci-
fying S1(J(i,j)) of (34), it is sufficient for DLCEs and
QDLCEs to choose exp(−S1(J(i,j))). Let

exp (−S1(J)) = (1− p)δ(J) + pδ(J − 1) (55)

with p ∈ [0, 1]. The variables J(i,j) ∈ {0, 1} can then
be interpreted as occupation numbers of the bonds.
Furthermore, if we choose σi ∈ {±1} we obtain a
– bond-diluted Ising model.

Choosing σi ∈ Zq we obtain a
– bond-diluted q-state Potts model.

If σi ∈ Sq, we obtain a
– bond-diluted Heisenberg model.

QDLCEs provide a systematic analytic expansion for
disordered systems with bond dilution in a quenched limit
without intrinsic truncation to subsets of graphs to all or-
ders. Coming from the high temperature (small β) region
one can study the phase structure as a function of the
degree of dilution. While the low orders of the expansion
can be easily calculated by hand, the first step towards the
phase structure down to the critical region is a computer
implementation of the algorithmic generation of graphs.
Work in this direction is in progress.

4 Summary and conclusions

In this paper we have explicitly shown how to avoid the
replica trick for calculating the free energy of disordered
systems in the quenched limit. No uncontrolled limit n→
0 has to be taken, the quenched system can be represented
as a sum of a certain subset of DLCE graphs, instead. This
subset of so-called QDLCE graphs has been identified in
this paper.

DLCEs are a systematic expansion method to study
the phase structure of disordered systems. It is system-
atic in the sense that we do not restrict the expansion to
certain subclasses of graphs that can be summed up, but
we identify and keep all graphs that contribute to a given
order in the expansion parameter. This is certainly an ad-
vantage over other graphical expansion schemes. DLCEs
provide an analytic tool for studying systems in situations
in which it has been impossible so far.
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